Using Head Tracking Data for Robust Short Term Path Prediction of Human Locomotion

نویسندگان

  • Thomas Nescher
  • Andreas M. Kunz
چکیده

Modern interactive environments like virtual reality simulators or augmented reality systems often require reliable information about a user’s future intention in order to increase their immersion and usefulness. For many of such systems, where human locomotion is an essential way of interaction, knowing a user’s future walking direction provides relevant information. This paper explains how head tracking data can be used to retrieve a person’s intended direction of walking. The goal is to provide a reliable and stable path prediction of human locomotion that holds for a few seconds. Using 6 degrees of freedom head tracking data, the head orientation and the head’s movement direction can be derived. Within a user study it is shown that such raw tracking data provides poor prediction results mainly due to noise from gait oscillations. Hence, smoothing filters have to be applied to the data to increase the reliability and robustness of a predictor. Results of the user study show that double exponential smoothing of a person’s walking direction data in combination with an initialization using the head orientation provides a reliable short term path predictor with high robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Design of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective

In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...

متن کامل

Tracking of Humans in Video Stream Using LSTM Recurrent Neural Network

In this master thesis, the problem of tracking humans in video streams by using Deep Learning is examined. We use spatially supervised recurrent convolutional neural networks for visual human tracking. In this method, the recurrent convolutional network uses both the history of locations and the visual features from the deep neural networks. This method is used for tracking, based on the detect...

متن کامل

3D Tracking of Human Locomotion: A Tracking as Recognition Approach

Estimating mode (walking/running/standing) and phases of human locomotion is important for video understanding. We present a new ”tracking as recognition” approach. A hierarchical finite state machine constructed from 3D motion capture data serves as a prior motion model. Motion templates are used as the observation model. Robustness is achieved by making inferences in the prior motion model wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trans. Computational Science

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2013